
Evaluating the goodness of MANETs performance results
obtained with the ns-2 simulator

Jorge Hortelano, Marga Nácher, Juan-Carlos Cano, Carlos Calafate, Pietro Manzoni
Polytechnic University of Valencia
Dept. of Computer Engineering

Camino de Vera, s/n, 46071 Valencia, SPAIN
pmanzoni@disca.upv.es

ABSTRACT
The development of new protocols and applications for Mo-
bile Ad Hoc Networks (MANET) requires a thorough test-
ing before their deployment in a real environment. Testing is
typically based on simulation, even though this might “over-
simplify” the problem thus leading to incorrect results. In
this work we describe Castadiva, a test bed based on low-
cost off-the-shelf devices, which is used to test protocols de-
veloped for MANETs. Castadiva is completely compatible
with the file format used by the ns-2 simulator, so simpli-
fying and allowing a fair comparison between the two sys-
tems. We compare the results obtained with Castadiva and
the ns-2 network simulator, and demonstrate that the ns2
simulator is a reliable tool for the evaluation of MANETs
related proposal.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol verification; D.2 [Software Engineer-
ing]: Software/Program Verification

Keywords
Simulation, ad hoc networks, validation.

1. INTRODUCTION.
Mobile ad-hoc networks (MANET) [1] are wireless networks
with no fixed infrastructure. Nodes belonging to a MANET
can either be end-points of a data interchange or can act
as routers when the two end-points are not directly within
their radio range. The growing research efforts focusing on
this new technology requires the availability of tools that
allow researchers to evaluate their proposals. Testing and
evaluating any of the proposed protocols for MANETs is a
mandatory request to guarantee its success in any real word
application.

Researchers have two options for testing their proposals, ei-
ther through simulation or using real test-beds platform.

NSTools 2007 - First International Workshop on Network Simulation Tools
2007. October 22, 2007, Nantes France

Among the available networks simulators for MANETs, ns-
2 [2] is the most popular in the research community. It
is a discrete event network simulator, which can be easily
extended and which is well documented. Simulation tools
are used because they are flexible and inexpensive. A real
test-bed platform on the contrary permits to obtain more
rigorous and realistic results.

In this work we use Castadiva, a test-bed architecture that
simplify carrying out realistic experiments; it relies on low-
cost, off-the-shelf devices combined with a Linux platform.
Castadiva allows generating network topologies, exporting
them to real devices and obtaining the test results. It can
also generate different types of traffic between nodes, and of-
fers support for some well-known ad-hoc routing protocols.
It relies on a cheap architecture that includes two differ-
ent networks: a wired network, called connection network,
that connects the core with a group of wireless nodes, and a
wireless network where the actual test-bed experiments are
made. We developed a group of tools for administration pur-
poses, with a friendly user interface design to help the user
to define the scenario of the network and the desired traffic
connections between MANET nodes. All of these tools were
developed with open source software.

Since Castadiva is completely compatible with the ns-2 file
format we used it to perform the comparison in a simple
and straightforward manner. We selected a range of both
static and dynamic MANETs scenarios and compared the
obtained results in Castadiva with those obtained using ns-
2. We confirmed that the ns-2 simulator is a reliable tool
that provides results which are comparable, although not
identical, to those obtained with a realistic MANET.

The rest of this paper is organized as follows: Section 2
describes Castadiva’s architecture. Section 3 presents the
implementation details and, in Section 4, we compare this
tool with the ns-2 simulator. Finally, in Section 5 we present
our concluding remarks.

2. CASTADIVA OVERVIEW
Castadiva is a test-bed developed to evaluate and analyze
protocols and applications for MANETs. The test-bed re-
lies on an actual wireless network between nodes for testing
purposes.

The main application, developed in Java, controls all de-
vices and manages the links among them according to a



pre-defined network topology. It also manages traffic gener-
ation between node pairs. Castadiva combines two different
networks: the coordination network (wired), that connects
the Castadiva core with the wireless nodes, and the wire-
less network, where actual tests are run. Figure 1 shows a
schema of Castadiva’s components.

Figure 1: Schema of Castadiva’s components.

The coordination network is a wired network that connects
Castadiva’s core server with the wireless nodes. This net-
work allows the main application to send configuration mes-
sages to all the nodes without creating any interference within
the wireless network itself. It is based on Fast-Ethernet
technology, avoiding large latency. Basically, this network
requires a switch connected to the main server and to all
nodes. Through this network the main application sends
instructions to nodes, allowing them to re-configure so as
to create the desired network topology. It also allows run-
ning traffic-generating applications available on each wire-
less node. The SSH protocol is used to send instructions
through this network. Using a fast network means that
all nodes will start an experiment at about the same time,
avoiding significant latency and maximizing result accuracy.
The wireless network is composed of wireless nodes, and the
actual topology of this network is defined using the GUI of
Castadiva.

Castadiva core has two main functions: (a) to allow a user
to interact with the system so as to define all the test pa-
rameters required and (b) to coordinate the wireless nodes
during an experiment. By using Castadiva’s GUI a user can
control all of Castadiva’s functionality, defining the network
topology and the traffic flow among nodes. Castadiva al-
lows setting the scenario area where nodes will be deployed.
When selecting a node, its location is highlighted and it
can be changed according to the desired network topology.
When all nodes are deployed the user can press the button
Simulate, and each physical node will be re-programmed so
as to enforce the chosen network topology. Figure 2 shows
how Castadiva allows a user to interact with the network.
We describe the whole functionality offered by Castadiva’s
GUI in Section 3.2.1.

Castadiva’s server executes the application and configures
the network devices. It consists of a Pentium IV with 1
GBs of RAM memory, and has a Linux Debian Etch distri-
bution installed. Concerning the wireless nodes used, they

can be any sort of computing device, like a laptop, a PDA or
a wireless router. The main requirement for a node is that it
must have a Linux/Unix operative system installed, and two
network cards: an Ethernet card and an IEEE 802.11 card.
If the node is a wireless router, the OpenWRT [3] kernel
is a good solution. OpenWRT is an open source operat-
ing system available for a wide range of router manufactur-
ers. This embedded Linux system natively offers SSH con-
nections, along with the possibility of running shell scripts.
Moreover, a programmer can develop its own application in
a standard Linux distribution and export it to this operative
system. In our case, we developed some applications in C
for traffic generation/control purposes.

Figure 3: Castadiva’s physical network.

Figure 3 shows our test-bed. One switch connects CAS-
TADIVA’s server with all the wireless nodes for coordina-
tion purposes. On the right hand of the picture the group
of wireless nodes being used are shown. It consists of ten
Linksys routers (models WRT56G and WRT56GL) and a
Buffalo router (model WZR-RS-G54). The wireless ad hoc
network conformed by these nodes is the one used in Cas-
tadiva’s testbed experiments.

3. CASTADIVA’S IMPLEMENTATION DETAILS
In this section we detail the requirements of Castadiva on
the server and on the wireless nodes. We describe the soft-
ware tools we have developed to connect all the wireless
nodes with the server, and how Castadiva allows making
connections among them. We also explain the process of
designing network topologies by using the Scenario Genera-
tion tool, an interactive and user-friendly interface that al-
lows defining the network’s scenario and the desired traffic
connections among nodes.

Castadiva requires some libraries and services to operate.
The requirements of Castadiva are different for the server
and the wireless nodes. The server must be a standard
Linux-based system and must have a Java Virtual Machine,
an SSH client and an NFS server installed. Each node must
be a Linux based system with an SSH server and an NFS
client; besides, it must include the libgcc library and have
the Iptables toolset installed (see figure 4).

The connection between Castadiva’s core element (server)
and each node is made using both SSH and NFS connec-
tions. On Castadiva’s server, the user interacts with the ap-
plication by defining the network topology, the traffic and
selecting the desired routing protocol. Then, through SSH,
the application sends a starting instruction to each node



Figure 2: A view of Castadiva’s GUI.

Figure 4: Software components for Castadiva.

through the coordination network (wired). Wireless nodes
achieve coordination among themselves by executing the re-
quired binaries, which are stored into a server folder shared
through NFS. This is a easy way to spread instructions to all
nodes, and it solves storage limitation problems on nodes.
When tests start, a group of files with the results are created
and stored into Castadiva’s server by again relying on the
NFS filesystem. We find that Ethernet connections are fast
enough to export these files to the routers without signifi-
cant delays.

The main application parses the results, obtaining the dif-
ferent testbed statistics. Finally, the application displays
results to the user.

The application was developed using the Java programming
language and the BASH scripting language. To make SSH
connections through Java we use JSch [4], by JCraft. It
is required to coordinate all the nodes during experiments.
Castadiva’s implementation can be divided into two parts:
the main application and the light-weight applications run-
ning on wireless nodes. The latter are the focus of the next

section.

3.1 Wireless nodes’ software
Each node has a set of requirements that must be met for
successful operation: a Linux-based operative system, a set
of special-purpose scripts, some specific applications and
connectivity to Castadiva’s server.

The operating system installed on each router is OpenWRT.
OpenWRT allows executing BASH scripts natively; besides,
it includes Dropbear, a simple SSH server used to receive
instructions from Castadiva’s server. Concerning the set
of Castadiva’s scripts, they are generated automatically by
Castadiva’s main application. Their purpose is to configure
the wireless network topology.

Each node makes use of three applications: Iptables, TcpFLow,
and UdpFlow. The first one is open source and exist in most
Linux distributions, while the other two were developed by
us.

Network topology configuration is made through the Ipta-
bles [5] tool. According to the selected topology, Iptables
allows us to dynamically break the network links between
pairs of nodes. This tool exists for all Linux distributions,
including the OpenWRT embedded system.

To generate traffic we create the UdpFlow and TcpFlow
tools. Both tools are designed to create a traffic flow between
two nodes, each tool create one class of traffic. To create a
flow of data we must specify a source/destination pair, the
starting and ending times for this flow, and the maximum
amount of bytes to be sent.

Castadiva also includes routing agents for well-known rout-
ing protocols, such as the AODV [6] provided by the Upp-
sala University and the OLSR [7] which is included with the



OpenWRT distribution.

3.2 Main application
Castadiva’s core element, a Java application running at the
server, includes all the control functions required for test-
bed experimentation. It is responsible for network topol-
ogy maintenance, traffic control, as well as reporting the
obtained simulation results and graphical representation.
When the user define the network scenario and the selected
traffic, Castadiva configures the wireless nodes according
to that topology. The application communicates with each
node through SSH connections to send the required instruc-
tions. The traffic flow between nodes and the routing pro-
tocol used are also set through this technique. When all ex-
periments are finished, Castadiva’s core calculates the per-
formance results, and finally it shows these results to the
user.

Castadiva’s main application was created using Java’s Swing
library. We consider that it is a good solution for visual de-
sign since most basic components are already created, and
can be easily modified by the programmer. In its develop-
ment we have used the Model - View - Controller [8] design
as reference.

3.2.1 Scenario Generation Tool
Castadiva is designed to be a test-bed where network scenar-
ios and traffic between nodes are generated so as to resemble
a real MANET. Therefore, it is expected to be an easy and
useful tool for the study of MANETs.

To start a new experiment we only need to define the net-
work topology in the corresponding window and then define
the traffic flow and the routing protocol used. By pressing
the start button tests begin, and Castadiva returns the test
results. We now offer more details about Castadiva’s GUI.

Main menu
A standard menu allows accessing the different options of
Castadiva. Basic options were added, allowing a user to
save and load a project, or export it to other test environ-
ments such as ns-2. It actually generates all the files required
as input to this particular simulator, allowing to compare
Castadiva’s test results with those obtained through simu-
lation. By selecting the Application menu you may start a
new testbed experiment, load a previous one, or save the
last one defined. It also allows to exchange files between
ns-2 and Castadiva, allowing to use the same scenario and
traffic in both applications.

Adding Nodes To The Testbed
Before starting an experiment the user needs to define the
number of participating nodes, along with their configura-
tion. Such information allows Castadiva to access nodes and
manipulate them to generate a scenario. All the information
is defined automatically when the user wishes to add a new
one, though it can be changed by the user or can be read
from a file. An internal identifier is required to distinguish a
node from others in Castadiva’s framework. Such identifier
is then referenced when defining the network topology and
data connections. The remaining parameters will be used
by Castadiva’s main application to connect nodes among

themselves and with the main server. The MAC address is
required for Castadiva to enforce topology changes.

All the executable files and the scripts are stored in an NFS
directory that is accessible by all nodes. This way Castadiva
makes storage capacity independent of wireless nodes’ mem-
ory.

Castadiva relies on its own tools to generate traffic between
nodes. Such tools are run on each node, and must be com-
piled for all types of CPU used. Currently, tools are com-
piled for MIPS and Intel processors, though the list can be
easily augmented.

The SSH user and password fields are used by the main ap-
plication to connect to each individual router and submit
commands. Also, a Ping button was included to allow test-
ing the connectivity between the server and routers.

Ad Hoc Network Scenario Generation
Once all the nodes are defined, they can be distributed to
conform a scenario. Castadiva supports both manual and
random topology generation, and the scenario is set through
Castadiva’s blackboard. The blackboard is a representation
of a virtual environment where nodes are located. Nodes are
differentiated through different colors and labels. If the ap-
propriate option is selected, the radio communication range
is also shown through a circle of the same colour.

Figure 5: Scenario definition with CASTADIVA.

Figure 5 shows the topology generation environment. We
can see ten nodes located in a scenario of 1000 x 1000 meters
(scenarios bounds are marked with a darker line).

At the right hand we may edit node properties, such as
position and signal range. Castadiva also can activate or
deactivate the RTS/CTS 802.11 option for each node. The
group of buttons appearing below allow starting a new test,
stopping it and rebooting nodes to reset all values.

At the left hand, Castadiva offers scenario option editing.
We can define the scenario bounds, the test time, node mo-
bility and the routing protocol used. The Declare traffic
button allows setting traffic, as shown below, and the stop
button halts it.

A status bar provides general information to inform the user
about what is being done, and the horizontal scrolls allows
zooming in and out. Finally, the user may alternate between
two different views: radio ranges or a graph. Every edge of
the graph represents an IEEE 802.11 link connection, which
is a more intuitive view.



Mobility in Castadiva.. It is important to point out the
speed and pause option of the Scenario Window. If a user
write a value greater than zero in the speed option, each
node acquire a random movement with a speed between zero
and the inserted value. When a node arrives to a destination
point, it wait for a selected pause time and then select a
new random destination point to move on. This behavior is
also completely compatible with the one selected in the ns-2
simulator.

Figure 6: Mobility implementation.

Castadiva generate all node movements needed for the sim-
ulation before it starts. For each simulated second, it calcu-
lates the visibility range for each node. The obtained visi-
bility is translated into Iptables rules and sleep commands.
Algorithm 1 shows the behaviour of Castadiva when a node
(with MAC 00:14:BF:3C:39:EA) go out range at second 10
and return in range at second 25.

Algorithm 1: Iptables rules for a simulation between two
nodes.
sleep 10
iptables -I INPUT -m mac –mac-source 00:14:BF:3C:39:EA
-j DROP
sleep 15
iptables -D INPUT -m mac –mac-source
00:14:BF:3C:39:EA -j DROP

Castadiva also allows a user to capture the network topology
at any simulated second, which could be useful to do a post-
processing of the changes occurred in a network topology
when the mobility has been activated.

3.2.2 Network Traffic Declaration
Castadiva’s traffic generation tool allows defining different
types of traffic flows between pairs of nodes. With that pur-
pose Castadiva provides a table where each row defines a
connection. Traffic parameters for each connection can be
set depending on the type of protocol selected, and invalid
values are marked with red. Examples of parameters are:
packet size, packets per second, start time, end time and
maximum number of packets sent. When an experiment
finishes, Castadiva fills in this table with results, includ-
ing throughput and, if traffic is UDP based, the percentage
of packets received. Castadiva also shows the percentage of
UDP packets correctly received and the aggregated through-
put.

3.2.3 Random test generator

Sometimes it is useful to automate the test-bed evaluation
process varying different parameters. With that purpose
Castadiva includes functionality to generate random tests,
where a user can define traffic and automatically test with
different number of nodes and randomly-generated network
topologies.

The user must specify the bounds of the scenario and the
routing protocol used. The minimum and maximum number
of nodes for testing must also be defined, along with the
increase granularity. (e. g., with a node interval between
4 and 10 nodes and a granularity of 2, Castadiva executes
four tests with 4, 6, 8, and 10 nodes). Castadiva allows also
to specify how many times each test will be repeated.

At the top left the current scenario generated is displayed,
though it can not be modified. Again, all the tests can be
stored in either Castadiva’s or ns-2’s format.

4. PERFORMANCE RESULTS COMPARI-
SON

In this Section we describe the comparison of the perfor-
mance results obtained using Castadiva and the ns-2 sim-
ulator. We use a representative scenario where nodes are
located so that the maximum number of hops between them
is four (see Figure 7).

Figure 7: The scenario used for the test.

The scenario spans a 1000m x 700m area, and the test time
is of 510 seconds. We set the wireless nodes’ range to 250
meters. In terms of traffic, we define both UDP and TCP
connections between each participating node and node AP7.
For TCP connections, the maximum transfer size is of 1000
MB. UDP flows generate 4 packets per seconds, and packet
size is fixed at 512 bytes. The traffic start at the simulation
time of 10 seconds, allowing some previous node movement.

Figure 8 shows a by-node comparison between Castadiva
and ns-2 node. In this test, each node has a maximum speed
of 5 m/s. and no routing protocol is selected, therefore only
traffic between directly connected nodes is allowed. The
selected scenario was generated by ns-2 and imported to
Castadiva.

The results show that the obtained results are quite similar.
Since we have not selected any routing protocol, only those
connections which go through directly connected nodes can
successfully delivered. We also observe that Castadiva has a
lower throughput than ns-2. When Castadiva is selected, the



 0

 20

 40

 60

 80

 100

AP10AP9AP8AP6AP5AP4AP3AP2AP1

P
ac

ke
ts

 d
el

iv
er

y 
ra

te
 (

%
)

Nodes

UDP: Castadiva comparison with NS-2 (max node speed 5m/s)

NS-2 with UDP
Castadiva with UDP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

AP10AP9AP8AP6AP5AP4AP3AP2AP1

T
hr

ou
gh

pu
t (

M
b/

s)

Nodes

TCP: Castadiva comparison with NS-2 (max node speed 5m/s).

NS-2 with TCP
Castadiva with TCP

Figure 8: Performance comparison between Cas-
tadiva and ns-2. Node speed is 5m/s, and no routing
is selected.

shared wireless media is prone to both transmission errors
and contentions among stations. In the case of ns-2, only
contention effects are simulated, which explains the observed
discrepancy.

We evaluate now the impact of node speed over the aggre-
gated UDP and TCP traffic. We vary node speed among 0,
5, 10, 15 and 20 m/s and repeate all the tests both in Cas-
tadiva and using ns-2. Figure 9 shows the obtained results.
We observe that when we selected TCP traffic the differences
among Castadiva and ns-2 increase. In TCP, when a packet
is lost or it arrives out of order, it is transmitted again. We
observe that the initial retransmission timeout differs be-
tween Castasdiva and ns-2 and so the obtained differences.
In ns-2 the timeout is around 5 second while Castadiva uses
a timeout of 8 simulated seconds.

We now repeat all the previous experiments but enabling
the OLSR routing protocol, so that nodes behaves also as
routers. We configure the OLSR parameters according to
those proposed in the RFC standard. We set the various
OLSR parameters as indicated in Table 1.

Parameter Value used

HELLO INTERVAL 2
REFRESH INTERVAL 2

TC INTERVAL 5
MID INTERVAL TC INTERVAL
HNA INTERVAL TC INTERVAL

Table 1: OLSR Parameters.

Figure 10 shows the obtained results node by node where

 0

 20

 40

 60

 80

 100

20151050

P
ac

ke
ts

 d
el

iv
er

y 
ra

te
 (

%
)

Maximum nodes speed

UDP: Castadiva comparison with NS-2 testing different nodes speed

NS-2 with UDP
Castadiva with UDP

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

20151050

T
hr

ou
gh

pu
t (

M
b/

s)

Maximum nodes speed

TCP: Castadiva comparison with NS-2 testing different node speeds

NS-2 with TCP
Castadiva with TCP

Figure 9: Impact that node speed has over the ag-
gregated traffic in Castadiva and ns-2.

each node has a maximum speed of 5 m/s. The average
percentage of UDP packets correctly received increases since
now all the selected connections can continue using a mul-
tihop communication. If we select TCP traffic, we observe
that the average throughput does not increase, because the
network was already saturated. However, since we are using
the OLSR protocol, now the throughput is shared among all
the nodes.

Finally, Figure 11 shows the obtained results when node
speed varies from 0, 5, 10, 15 and 20 m/s using OLSR pro-
tocol. We observe that when UDP traffic is selected, as node
speed increases, the packet delivery ratio decreases both in
ns-2 and in Castadiva. On the other hand when the traf-
fic is based on TCP flows, the obtained results are mainly
affected by high bandwidth requirements of TCP.

5. CONCLUSIONS
In this paper we compared the results obtained with Cas-
tadiva and the ns-2 network simulator. Castadiva is a test-
bed architecture based on low-cost off-the-shelf devices, which
is used to test protocols developed for MANETs. Castadiva
is completely compatible with the file format used by the ns-
2 simulator, so simplifying and allowing a fair comparison
between the two systems.

Using both TCP and UDP data traffic and under a vari-
ety of static and dynamic MANETs scenarios we show that
Castadiva is able to obtain confident results while using
real wireless off-the-shelf devices and we also demonstrate
that the ns2 simulator is a reliable tool for the evaluation of
MANETs related proposal.

6. ACKNOWLEDGMENTS



 0

 20

 40

 60

 80

 100

AP10AP9AP8AP6AP5AP4AP3AP2AP1

P
ac

ke
ts

 d
el

iv
er

y 
ra

te
 (

%
)

Nodes

UDP: Castadiva comparison with NS-2 (max node speed 5m/s) using OLSR

NS-2 with UDP
Castadiva with UDP

 0

 1000

 2000

 3000

 4000

 5000

AP10AP9AP8AP6AP5AP4AP3AP2AP1

T
hr

ou
gh

pu
t (

M
b/

s)

Nodes

TCP: Castadiva comparison with NS-2 (max node speed 5m/s) using OLSR

NS-2 with TCP
Castadiva with TCP

Figure 10: Performance comparison between Cas-
tadiva and ns-2. Node speed is 5m/s, and OLSR is
selected.

This work was partially supported by the Ministerio de
Educación y Ciencia, Spain, under Grant TIN2005-07705-
C02-01 and by the Generalitat Valenciana, Ayudas com-
plementarias para proyectos de I+D+i, Spain, under Grant
ACOMP07/237.

7. REFERENCES
[1] S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic.

Mobile Ad Hoc Networking. IEEE Press, 2004.

[2] USC/ISI UC Berkeley, LBL and Xerox PARC
researchers. Network simulator - ns (version 2).
Available at: http://www.isi.edu/nsnam/ns/, 1998.

[3] Openwrt, wireless freedom. Available at:
http://openwrt.org.

[4] A. Yamanaka and JCraft Inc. Jsch, the java secure
channel. Available at: http://www.jcraft.com/jsch/.

[5] B. Hubert. Linux Advanced Routing & Traffic Control
HOWTO. Available at: http://lartc.org/, 1.43 edition,
October 2003.

[6] Uppsala Universitet. Aodv-uu. Available at:
http://core.it.uu.se/core.

[7] P. Jacquet T. Clausen. Optimized link state routing
protocol (olsr). RFC: 3626, October 2003.

[8] T. M. H. Reenskaug. The model-view-controller (mvc)
its past and present. In Java Zone, Oslo, September
2003.

 0

 20

 40

 60

 80

 100

20151050

P
ac

ke
ts

 d
el

iv
er

y 
ra

te
 (

%
)

Maximum nodes speed

UDP: Castadiva comparison with NS-2 testing different nodes speed using OLSR

NS-2 with UDP
Castadiva with UDP

 0

 2

 4

 6

 8

 10

 12

 14

 16

20151050

T
hr

ou
gh

pu
t (

M
b/

s)

Maximum nodes speed

TCP: Castadiva comparison with NS-2 testing different node speeds using OLSR

NS-2 with TCP
Castadiva with TCP

Figure 11: Impact that node speed has over the ag-
gregated traffic in Castadiva and ns-2 when using
the OLSR protocol.


